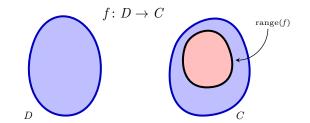


Model 28 circular slide rule by Concise Ltd.

- 1 Section 1.5: exponential functions
- 2 Section 1.6: inverse functions and logarithms



Section 1.6

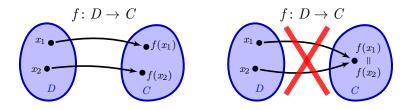
• Exactly one arrow departs from every point in *D*.

- Points in C that are not in the range of f are not hit by an arrow.
- Points in the range of f may be hit by more than two arrows.

Observation

If we reverse the direction of the arrows, then the result might not be a function.

A function $f: D \to C$ is one-to-one if $f(x_1) \neq f(x_2)$ for every x_1 and $x_2 \in D$ with $x_1 \neq x_2$.



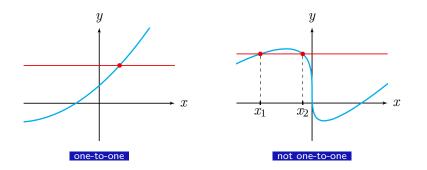
- This is equivalent with: for all x_1 and $x_2 \in D$ we have: if $f(x_1) = f(x_2)$ then $x_1 = x_2$.
- For a one-to-one function every point in *C* is the end point of *at most* one arrow.

Example

The function f(x) = 2x - 1 is one-to-one.

UNIVERSITY OF TWENTE. Introduction to Mathematics and Modeling Lecture 2: Exponentials and logarithms 4/27

Horizontal line test



The Horizontal line Test

If f is one-to-one, then a horizontal line intersects the graph of f in $\textit{at}\xspace$ most one point.

Example

The function
$$f(x) = 2x^2 - 1$$
 is not one-to-one.

- Notice that from $f(x_1) = f(x_2)$ follows: $x_1^2 = x_2^2$, which does not imply $x_1 = x_2$.
- Observe that

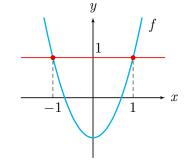
$$f(1) = 2 \cdot 1^2 - 1 = 1,$$

and

$$f(-1) = 2 \cdot (-1)^2 - 1 = 1,$$

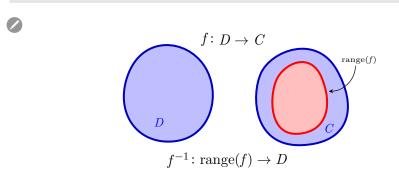
hence f(1) = f(-1).

- The graph of f does not satisfy the horizontal line test.
- One counterexample suffices.



Theorem

If $f: D \to C$ is one-to-one, then reversing the arrows yields a function from the range of f to D.



• This function is called the **inverse of** f, and is denoted as f^{-1} .

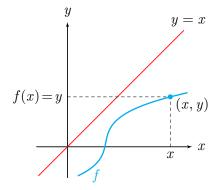
• If
$$y = f(x)$$
, then $x = f^{-1}(y)$.

Finding the inverse means: solve the equation y = f(x) for x.

Example

Find the inverse of f(x) = 2x - 1.

The graph of the inverse function



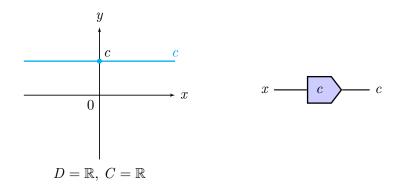
• Let y = f(x). Then (x, y) lies on the graph of f.

- From y = f(x) follows $x = f^{-1}(y)$, so (y, x) lies on the graph of f^{-1} .
- The points (x, y) and (y, x) are reflected across the line y = x.
- The graph of f^{-1} and the graph of f are symmetric with respect to the line y = x.

2.1

Definition

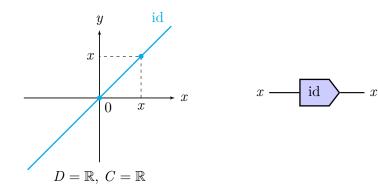
The constant function $c \colon \mathbb{R} \to \mathbb{R}$ assigns c to every $x \in \mathbb{R}$.



2.2

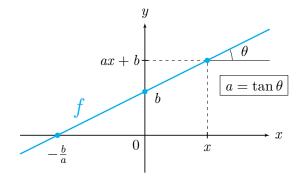
Definition

The identical map $id : \mathbb{R} \to \mathbb{R}$ assigns x to every $x \in \mathbb{R}$.



A linear function $f \colon \mathbb{R} \to \mathbb{R}$ is defined as

$$f(x) = ax + b, \qquad a \neq 0.$$



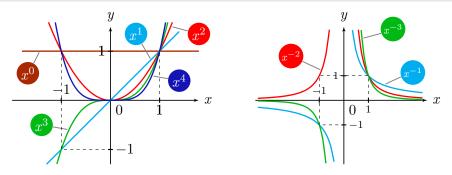
Power functions

Section 1.1

Definition

For every integer n we define

$$x^n = \begin{cases} 1 & \text{if } n = 0, \\ \underbrace{x \cdot x \cdot \ldots \cdot x}_{\substack{1 \text{ if is } n \geq 1, \\ \frac{1}{x^{|n|}} & \text{if is } n < 0. \end{cases}$$

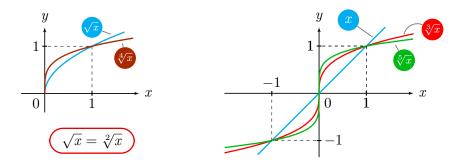


14/27

Definition

For every positive integer n we define the $\sqrt[n]{x}=x^{\frac{1}{n}}$ as the inverse of $f(x)=x^n$ where the domain of f is assumed to be

 $\begin{array}{ll} [0,\infty) & \textit{if } n \textit{ is even,} \\ \mathbb{R} & \textit{if } n \textit{ is odd.} \end{array}$



• For arbitrary fractions $\frac{p}{q}$ (with p an integer and q a positive integer) we define

$$x^{\frac{p}{q}} = \left(x^{\frac{1}{q}}\right)^p$$

If $\alpha \in \mathbb{R}$ is not a fraction, then x^{α} is defined by limits. This is beyond the scope of this course.

Basic properties

For arbitrary 1 x, y, α and β we have

1
$$x^0 = 1$$

2 $1^{\alpha} = 1$
3 $x^{\alpha}y^{\alpha} = (x y)^{\alpha}$
4 $x^{\alpha+\beta} = x^{\alpha}x^{\beta}$
5 $x^{\alpha-\beta} = \frac{x^{\alpha}}{x^{\beta}}$
6 $(x^{\alpha})^{\beta} = x^{\alpha\beta}$

¹ Some combinations of x, y, α and β may not be defined.

Examples

$$3^{1.1} \cdot 3^{0.7} = 3^{1.1+0.7} = 3^{1.8} = 3^{\frac{9}{5}} = \sqrt[5]{3^9}$$

$$\frac{\left(\sqrt{11}\right)^3}{\sqrt{11}} = \left(\sqrt{11}\right)^{3-1} = \left(\sqrt{11}\right)^2 = 11$$

$$\left(7^{\sqrt{2}}\right)^{\sqrt{2}} = 7^{\sqrt{2}\cdot\sqrt{2}} = 7^2 = 49$$

$$7^{\pi} \cdot 8^{\pi} = (7 \cdot 8)^{\pi} = 56^{\pi}$$

$$\left(\frac{4}{9}\right)^{\frac{1}{2}} = \frac{4^{\frac{1}{2}}}{9^{\frac{1}{2}}} = \frac{\sqrt{4}}{\sqrt{9}} = \frac{2}{3} \quad \text{or} \quad \left(\frac{4}{9}\right)^{\frac{1}{2}} = \sqrt{\frac{4}{9}} = \sqrt{\left(\frac{2}{3}\right)^2} = \frac{2}{3}$$

If I have 1000 Euro in a savings account and the bank gives 5% interest each year, what will be my savings after 5 years?

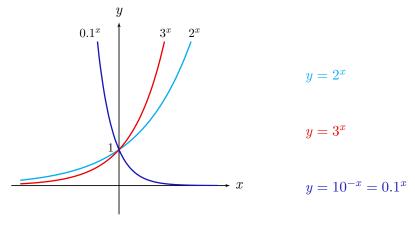
Year	Savings (€)	
0	1000	€
1	$1000 \cdot (1.05) = 1050.00$	4000 -
2	$1000 \cdot (1.05)^2 = 1102.50$	3000 -
3	$1000 \cdot (1.05)^3 = 1157.63$	2000 -
4	$1000 \cdot (1.05)^4 = 1215.51$	1000
5	$1000 \cdot (1.05)^5 = 1267.28$	

If I have 1000 Euro in a savings account and the bank gives 5% interest each year, what will be my savings after 35 years?

Year	Savings (€)		
0	1000		
5	$1000 \cdot (1.05)^5$	= 1267.28	*€
10	$1000 \cdot (1.05)^{10}$	= 1628.89	
15	$1000 \cdot (1.05)^{15}$	= 2078.93	3000
20	$1000 \cdot (1.05)^{20}$	= 2653.3	2000
25	$1000 \cdot (1.05)^{25}$	= 3386.35	1000
30	$1000 \cdot (1.05)^{30}$	= 4321.94	0 5 10 15 20 25 30 35
35	$1000 \cdot (1.05)^{35}$	= 5516.02	0 0 10 10 20 20 00 00

UNIVERSITY OF TWENTE

Let a > 0. The exponential function with base a is $f(x) = a^x$.



 Exponential Functions.nb

Introduction to Mathematics and Modeling

- If a quantity y depends on time and y is proportional to an exponential function, then we say that y grows exponentially.
- If the base is less than 1 we say that y decays exponentially.
- the human population (annual growth percentage $\approx 1.14\%$),
- carbon dating (the half-life of $^{14}\mathrm{C}$ is approximately 5730 years),
- compound interest,
- Moore's law: the number of transistors on integrated circuits doubles approximately every two years.

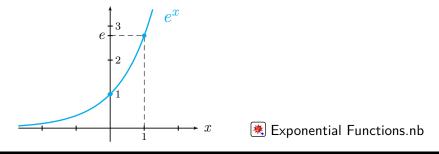
Exponential growth and decay

If y grows exponentially, then there are constants a and y_0 such that $y_0 = x_0 a^x$

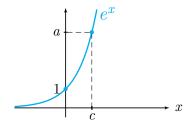
- The derivative of an exponential function is proportional to the function itself.
- If $f(x) = a^x$ then $f'(x) = K a^x$ for some constant K.
- There is one specific base value for which K = 1. This base is called e and is approximately

 $e \approx 2.71828182845904523536028747135266249775724709\ldots$

• The function e^x is called the **natural exponential function**.



Exponential growth and decay



• Let a > 0, then there is a constant $c \in \mathbb{R}$ such that

$$a = e^c$$
.

• For every x the following holds:

$$a^x = (e^c)^x = e^{cx}$$

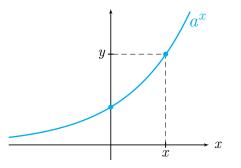
Exponential growth and decay

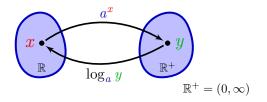
If y grows exponentially, then there are constants c and y_0 such that $y(x) = y_0 e^{cx}$.

- If c > 0, then a > 1 hence y is exponentially growing, and c is called the **growth rate**.
- If c < 0, then a < 1 hence y is exponentially decaying, and c is called the **decay rate**.
- The constant y_0 is equal to y(0), and is called the **initial value**.

The logarithm with base *a* is the inverse of the exponential function with base *a*:

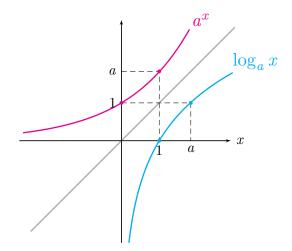
$$y = a^x \qquad \Longleftrightarrow \qquad x = \log_a y$$





- $\log_2 1 = 0$ because $2^0 = 1$,
- $\log_2 2 = 1$ because $2^1 = 2$,
- $\log_2 4 = 2$ because $2^2 = 4$,
- $\log_{10} 1000 = 3$ because $10^3 = 1000$,
- $\log_3 81 = 4$ because $3^4 = 81$,
- $\log_9 81 = 2$ because $9^2 = 81$,
- $\log_2 .25 = -2$ because $2^{-2} = \frac{1}{4} = .25$.

The graph of the logarithm



■ The graph of $y = \log_a x$ is obtained by reflecting the graph of $y = a^x$ across the diagonal line y = x

$$\log_a 1 = 0$$

 $\log_a a = 1$

$$\log_a(x\,y) = \log_a x + \log_a y$$

$$\log_a \frac{x}{y} = \log_a x - \log_a y$$
$$\log_a \frac{1}{y} = -\log_a y$$

 $\log_a\left(x^p\right) = p\,\log_a x$

Logarithms with special base

- \blacksquare We write the logarithm with base 10 as $\big|\,\log x$
- We write the logarithm with base e as $\ln x$
- The logarithm with base *e* is called the **natural logarithm**.

